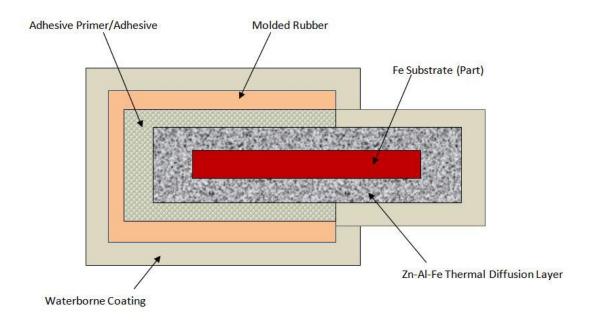
An Enhanced Corrosion Protection Mechanism for Rubber-to-Metal Bonding

Paul Mills*
Kalcor Coatings Company,
Willoughby, Ohio

Tony Hall*
Greenkote USA
Brook Park, Ohio

Outline


- 1. Motivation
- 2. Solution
- 3. The TCSM Coating Process
- 4. The Waterborne Coating Process
- 5. Test Results
- 6. Conclusions & Future Direction

1. Motivation

- Standards are becoming more stringent
 - Corrosion protection to 1,000 + hours
 - "Cosmetic Corrosion" is unacceptable
 - Dynamic properties demand improved bond performance
- Process variability within conventional processes
- Flexible processes for cost containment opportunities
- Compliance to environmental standards
- Thermal-Diffusion plus Waterborne coating provides functional and cosmetic properties

2. Proposed Solution

- Two-Stage Process
 - Thermo-Chemical Surface Modification (TCSM)
 - Waterborne high corrosion paint

2. Proposed Solution

- Better Corrosion Resistance:
 - > 1500 hours of salt spray corrosion resistance
 - Long Term under bond corrosion protection
 - Inhibits Galvanic Cell Activity
- Better Bond Performance:
 - Initial Bond Strength
 - Bond Strength Retention
 - Compatible with industry recognized adhesive coatings
- Better Environment, Health & Safety:
 - No Chrome III or Chrome VI
 - Eco-Friendly processes configured to customer requirements

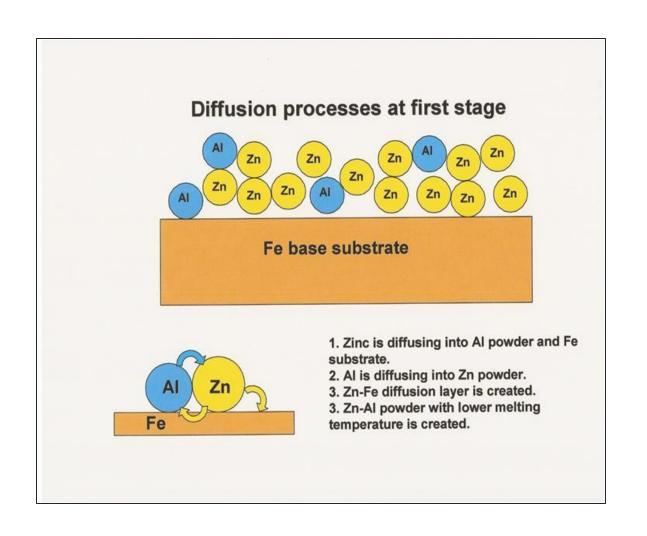
TCSM Applications

Substrates

- Stampings
- Fasteners
- Sintered Metal & MIM Shapes
- Forgings
- Ductile Iron Castings
- Formed Tubes
- Bars & Pipe

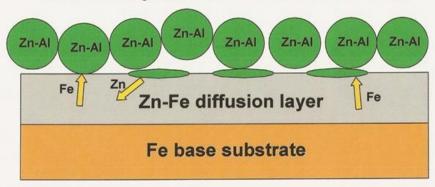
Components

- Suspension Bushings
- Engine Mounts
- Exhaust Hangers
- Chassis Mounts
- Mass Dampers
- Strut Mounts
- Seals

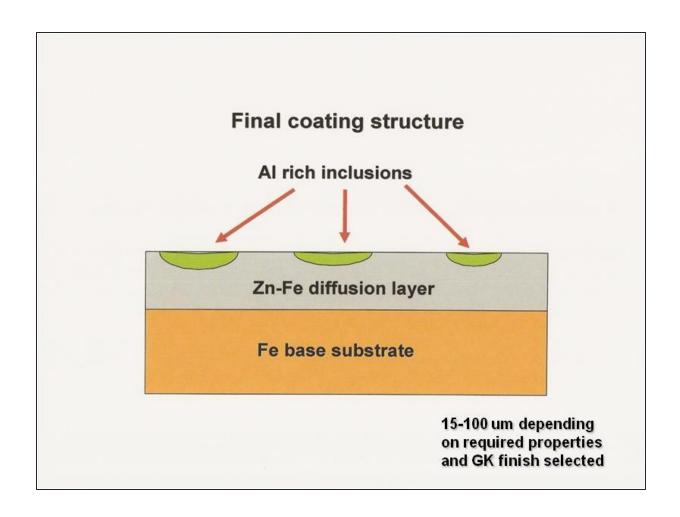

3. Thermo Diffusion Coatings

Patented zinc/aluminum protective formulations used as a base coat for automotive and industrial Duplex Coatings.

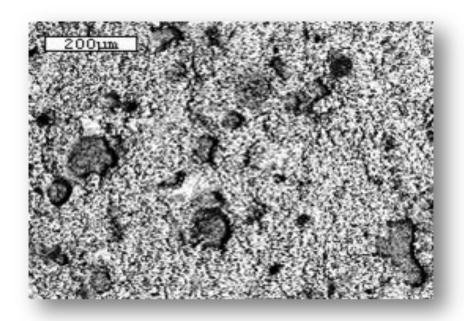
- Dry bulk powder
- No VOC's or out gassing bi-products
- Do not contain Chrome III or Chrome VI
- Does not cause Hydrogen Embrittlement
- Complies with RoHS and ELV Directive (2000/53EC)

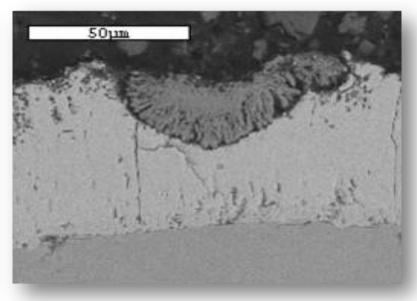


First Stage TCSM

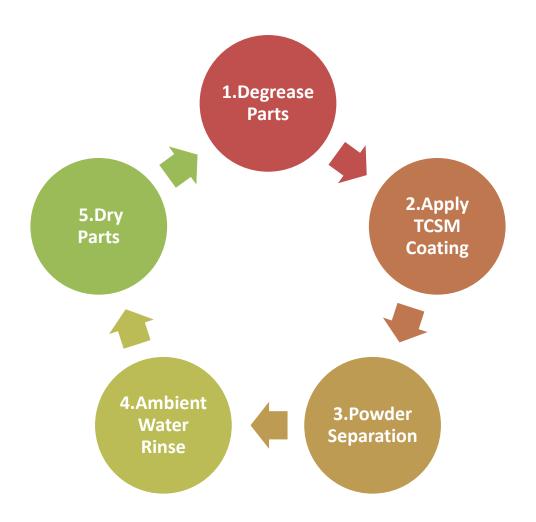

Second Stage TCSM

Diffusion processes at second stage




- 1. Zn-Al powder melted grains are absorbed on the Zn-Fe diffusion layer.
- 2. Zn from those grains is diffusing into Zn-Fe diffusion layer.
- Fe is diffusing into the absorbed grains, trial AI-Fe-Zn system is creating, melting temperature is increasing, absorbed grains are "frizzing" and AI rich areas are created.
- Fe is diffusing into the Zn-Al powder grains, trial Al-Fe-Zn system is creating, melting temperature is increasing, powder grains are "frizzing" absorbtion process is finished.

Result: TCSM



TCSM - Micrographs

TCSM Coating Process

4. Waterborne Coating Step

- Low VOC corrosion resistance polymer coating
 - Excellent adhesion to metals and rubber formulations
 - Low moisture and permeability properties
 - Air dry or low bake temperatures for accelerated dry time
 - Variable film thicknesses applied by spray or dip systems
 - Can be formulated for colors with gloss levels up to 35
- Enhanced corrosion performance when used with TCSM
- Cost effective alternative for electro-deposition coatings when applied to RTM components and sub assemblies

Waterborne Paint Application

Dip, or Dip-Spin

Spray Painting

Waterborne Coating Specifications

Product Name	Kalgard 094 – water reducible coating #94-9218JB			
Solids	54% ±2% by weight, 37% ±2% by volume			
VOC	0.5 lbs/gallon theoretical			
Weight/Gallon	11.12 ± 0.2 lbs / gallon			
Viscosity	35 ± 2 seconds, #2 Zahn			
Flash Point	205°F			
Gloss	2 – 8 @60°			
рН	5.5 – 6.5			
Coverage	303 sq. ft. / gallon @ 2.0 mil DFT			
Salt Spray	500+ hours ASTM B117			
Humidity	480+ hours ASTM D2247			
Gravelometer	Pass, SAE J-400			
Chemical Resistance	50/50 Ethylene Glycol, Excellent			
	10w30 Engine Oil @275°F @ 1 hour, Excellent			
	Gasoline 70°F @ 1 hour, Excellent			
	Brake Fluid 70°F @ 1 hour, Excellent			
Self Life	6 months maximum @ 70°F			
Cure Schedule	30 minutes @ 75°F @ 50% RH to Touch			
	45 minutes @ 75°F @ 50% RH to Handle			
	4 hours @ 75°F @ 50% RH to Recoat			
Application	Spray (air, airless, electrostatic), dip, dip spin, brush			
	touch-up			
Clean-up	While plastic: warm detergent water, after cure: MEK			
	·			

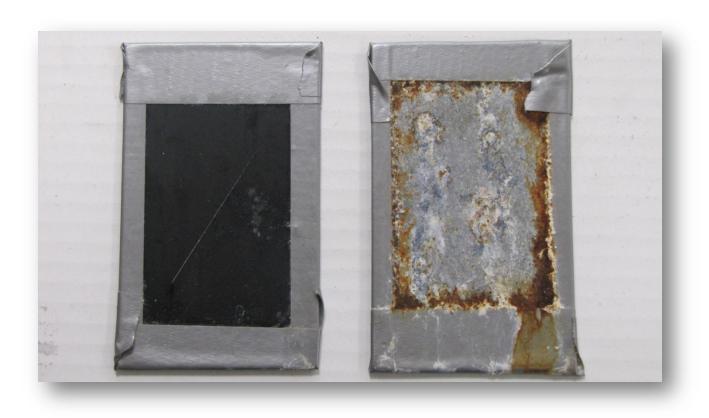
5. Test Results: Phosphate vs. TCSM with Adhesive Cover Coat

1,000 hours Salt Fog Testing ASTM B117

500 hours vs. 1,000 hours corrosion results

	Scribe Creep (mm)		Blistering		Unscribed Area	
Treatment	500 h	1000 h	500 h	1000 h	500 h	1000 h
Greenkote PM-1	0	0	none	none	No failure	No failure
Greenkote PM-10	0	0	none	none	No failure	No failure
Zinc Phosphate	0.1 mm	> 16 mm	none	several	No failure	5% Failure

500 hours vs. 1,000 hours bond strength


	Initial Bond Strength		1000 Hours Salt Spray			
Treatment	Pounds	Std. Dev.	Pounds	Std. Dev.	% Change	
Greenkote PM-1	1150.0	18.9	972.7	25.5	-15.42%	
Greenkote PM-10	1193.3	35.3	978.0	72.2	-18.04%	
Zinc Phosphate	939.9	104.8	252.3	253.5	-73.16%	
Improvement (w/PM-1)	+22.35%		+ 285.5%			

500 hours vs. 1,000 hours bond strength (2)

	Initial Bond Strength		1000 Hours Salt Spray		
					%
Treatment	Newtons	Std. Dev.	Newtons	Std. Dev.	Change
Greenkote PM-1	6831.5	169.49	6138.0	276.6	-10.15%
Zinc Phosphate	5613.0	1971.0	3165.0	1858.0	-43.61%
Improvement	+ 21.71%		+ 93.93%		

TCSM with and without top coating

1500 + hours Salt Fog Exposure – ASTM B117

TCSM + Waterborne Top Coat

TCSM only

TCSM and Waterborne Coating

2,000 hours Salt Fog Exposure ASTM B117

Process Testing on RTM Bonding Parts

6. Conclusions

Improved Bond Performance with TCSM coatings

- TCSM provides superior anchor sites for primer and adhesive topcoats.
- Initial Bond Strength improved 20%-30%
- Bond Strength retention exceeds 75% of original values after 1000 hours of Salt Fog exposure. No under bond corrosion failures reported.
- The coating performs well in post forming assembly operations for crimping, swaging, and bending.

6. Conclusions (cont'd)

 Existing systems are challenged to meet the latest cosmetic, performance and environmental requirements but the proposed process does.

Improved Corrosion Resistance

 TCSM + Waterborne coating tested beyond 1,500 hours of Salt Fog Exposure

Improved Environmental Compliance

- No Chrome III or Chrome VI
- Minimal process waste stream

The new system is more user friendly.

 TCSM + Waterborne coating process can be added to manufacturing operations for RTM components and assemblies

Thank You!

Tony Hall

Greenkote USA

Phone: 216-410-1021

E-mail: Tony.Hall@greenkote.com

www:greenkote.com

Paul Mills

Kalcor Coatings Company

Phone: 440-570-5228

E-mail: pmillsoh@aol.com

www.kalcor.com